Evolutionary Multiobjective Optimization in Water Resources: The Past, Present, and Future
نویسندگان
چکیده
This study contributes a rigorous diagnostic assessment of state-of-theart multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with four or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) nonseparability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملEvolutionary Bayesian Belief Networks for Participatory Water Resources Management under Uncertainty
A participatory integrated (social, economic, environmental) approach based on causal loop diagram, Bayesian belief networks and evolutionary multiobjective optimisation is proposed for efficient water resources management. The proposed methodology incorporates all the conflicting objectives in the decision making process. Causal loop diagram allows a range of different factors to be considered...
متن کاملCurrent and Future Research Trends in Evolutionary Multiobjective Optimization
In this chapter we present a brief analysis of the current research performed on evolutionary multiobjective optimization. After analyzing first and second generation multiobjective evolutionary algorithms, we address two important issues: the role of elitism in evolutionary multiobjective optimization and the way in which concepts from multiobjective optimization can be applied to constraint-h...
متن کاملA multiobjective discrete stochastic optimization approach to shared aquifer management: Methodology and application
[1] Negative effects from groundwater mining are observed globally. They threaten future supply locally. Especially in semiarid to arid regions, where aquifers are the sole freshwater resource, this is problematic and can lead to an excessive rise of provision costs. Proper resource management in such environments is crucial. In many instances, however, aquifers are common property resources. I...
متن کاملPrediction based mean-variance model for constrained portfolio assets selection using multiobjective evolutionary algorithms
In this paper, a novel prediction based mean-variance (PBMV) model has been proposed, as an alternative to the conventional Markowitz mean-variance model, to solve the constrained portfolio optimization problem. In the Markowitz mean-variance model, the expected future return is taken as the mean of the past returns, which is incorrect. In the proposed model, first the expected future returns a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012